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Motivación

∙ ¿Por qué estudiar las representaciones globales?

∙ Estudio de propiedades dentro de una clase
∙ Identificar elementos indescomponibles
∙ Preservación de propiedades existenciales

∀x̄ ∃!z̄
k∧
i=1

si(x̄, z̄) = ti(x̄, z̄)

∙ ¿Por qué y para qué desarrollar algoritmos para decidir
descomposición global?
∙ Encontrar ejemplos de representaciones
∙ Para el caso de álgebras finitas, hay resultados teóricos que se pueden
traducir en algoritmos
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Representaciones Globales

Definición
Un producto subdirecto A ⊆

∏
{Ai : i ∈ I} es global cuando se

cumple la siguiente propiedad:
PP (Patchwork Property) Si {Fr : r ∈ R} ⊆ τ AE , es un cubrimiento de I, y si xr,

con r ∈ R, son elementos de A tales que para cada r, s ∈ R, xr y xs
coinciden en Fr ∩ Fs, entonces existe un x ∈ A tal que x(i) = xr(i), cada
vez que i ∈ Fr.

τAE es la topología generada por los ecualizadores E(x, y), con x, y ∈ A,
definidos como:

E(x, y) = {i ∈ I : x(i) = y(i)}

Dado un álgebra A y un conjunto Σ ⊆ Con(A), decimos que Σ es un
espectro global si A ⊆

∏
{A/θ : θ ∈ Σ} es un producto global.
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Representaciones Globales

Definición
Un álgebra A es relativamente globalmente indescomponible (RGI)
en una cuasivariedad Q si para todo producto subdirecto global
B ⊆

∏
{Ai : i ∈ I} tal que B ≃ A y {Ai : i ∈ I} ⊆ Q, existe i ∈ I tal que

πi : B→ Ai es un isomorfismo.

Ejemplos

∙ La cadena de 2 elementos es la única álgebra de Boole
globalmente indescomponible.

∙ Las cadena de 2 y 3 elementos son los únicos reticulados
distributivos globalmente indescomponible.
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Problemas Computacionales

1. Dada un álgebra A y un conjunto Σ ⊆ Con(A), decidir si el conjunto
Σ es un espectro global.

2. Dada un álgebra A y un conjunto Σ ⊆ Con(A), decidir si existe
algún subconjunto Γ ⊆ Σ, tal que Γ sea un espectro global.

3. Dada un álgebra A decidir si es globalmente indescomponible.
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Avances teóricos (caso A finito)

Lema
Dada un álgebra A finita y un conjunto Σ ⊆ Con(A), entonces son
equivalentes:
1. Σ es un espectro global
2. ⟨Σ⟩ satisface el teorema chino del resto con respecto a Σ

Un proyectivo C satisface el teorema chino del resto con respecto a Σ

si cada sistema (θ1, . . . , θn, x1, . . . , xn) sobre C, tal que {θ1, . . . , θn}
minoriza Σ, tiene solución.

Σ minoriza Γ cuando para cada θ ∈ Γ existe δ ∈ Σ tal que δ ⊆ θ.
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Avances teóricos (caso A finito)

Lema
Dada un álgebra A finita y un conjunto Σ ⊆ Con(A). Sean {θ1, . . . , θn}
las minimales de Σ, entonces son equivalentes:
1. Σ es un espectro global
2. ∀x1, . . . , xn ∈ A tal que (θ1, . . . , θn, x1, . . . , xn) es sitema de
congruencias sobre ⟨Σ⟩, el sistema tiene solución.
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Complejidad

Problema
Input: Dada un álgebra A finita y un conjunto Σ ⊆ Con(A).
Output: Decidir si Σ es un espectro global

∙ Este problema está dentro de coNP, ¿es coNP-completo?
∙ ¿Existen restricciones que conviertan al problema en polinomial?
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¡Muchas gracias!
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