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MOTIVACIÓN

∙ ¿Por qué estudiar las representaciones globales?
∙ Aplicaciones teóricas interesantes:

∙ Teoremas tipo Nachbin
∙ Generalización del Teorema de Baker-Pixley

∙ ¿Por qué desarrollar algoritmos para decidir descomposición
global?
∙ Es muy difícil encontrar globales
∙ Para ejemplos chicos ya es difícil hacer las cuentas
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SISTEMA DE CONGRUENCIAS

Un proyectivo C satisface el teorema chino del resto con respecto a Σ

si cada sistema (θ1, . . . , θn, x1, . . . , xn) sobre C, tal que {θ1, . . . , θn}
minoriza Σ, tiene solución.

Σ minoriza Γ cuando para cada θ ∈ Γ existe δ ∈ Σ tal que δ ⊆ θ.

Lema
Dada un álgebra A finita y un conjunto Σ ⊆ Con(A), entonces son
equivalentes:
1. Σ es un espectro global
2. ⟨Σ⟩ satisface el teorema chino del resto con respecto a Σ
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SUBESPECTROS GLOBALES

Lema
Dada un álgebra A finita y un conjunto Σ ⊆ Con(A) tal que para cada
θ, δ ∈ Σ tenemos que θ ⊔⟨Σ⟩ δ ∈ Σ ∪ {∇}, entonces son equivalentes:
1. Hay un Γ ⊆ Σ tal que

⋂
Γ = ∆ y Γ es un espectro global para A.

2. Hay γ1, . . . , γk ∈ Σ tal que:
a. γ1 ∩ . . . ∩ γk = ∆

b. γ1, . . . , γk es una anticadena, es decir, γi ⊆ γj si y solo si i = j
c. Todo sistema ⟨γ1, . . . , γk; x1, . . . , xk⟩ sobre ⟨Σ⟩ tiene solución

Observaciones
1. γ1, . . . , γk de 2. no son necesariamente un espectro global de A.
2. Dados γ1, . . . , γk de 2., los siguientes son espectros globales de A:

∙ Γ = {γi ⊔⟨Σ⟩ γj : i, j = 1, . . . , k} \ {∇}
∙ Γ = {

⊔⟨Σ⟩
γ∈F γ : F ⊆ {γ1, . . . , γk}} \ {∇}
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ALGORITMO PARA SUBESPECTROS

Idea para generar todas las posibles γ1, . . . , γk:

∙ Generar tuplas de congruencias recursivamente.
∙ Además, para cada tupla, guardar los sistemas que no tienen
solución.

∙ En cada paso, para cada tupla, agregar una congruencia nueva
solo si es anticadena de las congruencias de la tupla.

∙ Con la tupla nueva, generar todos los sistemas que no tienen
solución, aprovechando los sistemas del paso anterior.

Observación
Si x es solución del sistema (θ1, . . . , θn, x1, . . . , xn), entonces el
sistema es equivalente a (θ1, . . . , θn, x, . . . , x)
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ALGORITMO PARA SUBESPECTROS

1: function AllGlobalKernels(A, Σ = {θ1, . . . , θn})
2: Output← ∅
3: H← ((), ⟨⟩)
4: for θ ∈ Σ do
5: for (Γ, S) ∈ H do
6: if Antichain(Γ, θ) then
7: S̃← ExtendConstantSys(Γ, θ)
8: for x ∈ S do
9: S̃← S̃ ∪ ExtendNonsolSys(⟨Γ, x⟩ , θ)
10: if θ ∩ Γ = ∆ and S̃ = ∅ then
11: Add Γ ∪ {θ} to Output
12: Add

(
Γ ∪ {θ}, S̃

)
to H

13: return Output
5



SEMIRETICULADOS

Un semireticulado es un álgebra S = (S;∧) que satisface:

∙ x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z
∙ x ∧ y ≈ y ∧ x
∙ x ∧ x ≈ x

Ejemplos de globalmente indescomponibles conocidos:

0

1

0

1

2

0 1

2

2 3 C

6



SEMIRETICULADOS

Un semireticulado es un álgebra S = (S;∧) que satisface:

∙ x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z
∙ x ∧ y ≈ y ∧ x
∙ x ∧ x ≈ x

Ejemplos de globalmente indescomponibles conocidos:

0

1

0

1

2

0 1

2

2 3 C
6



SEMIRETICULADOS: CASO DE ESTUDIO

0 1 2

3 4 5

6

A

∙ ¿Es globalmente indescomponible?
∙ En caso de que no, ¿Tiene una representación global con factores
globalmente indescomponibles?
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SEMIRETICULADOS: CASO DE ESTUDIO

∙ ¿Tiene una representación con factores en {2, 3,C}?

∙ Nos generamos Σ = {θ : A/θ ≃ B para B ∈ {2, 3, C}}
∙ Ejecutamos AllGlobalKernels(A,Σ)
∙ Obtenemos un conjunto vacío, entonces no tiene representación global
con factores indescomponibles

∙ ¿Es globalmente indescomponible?
∙ Nos generamos Con(A), las congruencias de A
∙ Ejecutamos AllGlobalKernels(A, Con(A))
∙ Obtenemos un conjunto NO vacío, entonces tiene representaciones
globales.
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RESULTADO

Primer tupla de AllGlobalKernels(A, Con(A)):
∙ γ1 = Congruence(|0, 3|, |1|, |2|, |4, 6|, |5|)
∙ γ2 = Congruence(|0, 4|, |1|, |2|, |3, 6|, |5|)

{5}{0, 3}

{4, 6}

{1} {2}

A/γ1

{0, 4} {5}

{3, 6}

{2} {1}

A/γ2
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CÓMO SEGUIR...

∙ Mejorar la eficiencia de cómputo.
∙ Utilizar como herramienta para comprobar resultados teóricos.
∙ Formular conjeturas a partir de observasiones.
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¡MUCHAS GRACIAS!
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